INORGANIC CHEMISTRY

DPP No. 3

Total Marks: 27

Max. Time: 28 min.

Topic :	Periodic Table and Pe	eriodicity			
Type of Questions Single choice Objective ('–1' negative marking) Q.1 to Q.4 Multiple choice objective ('–1' negative marking) Q.5 to Q.6 Comprehension ('–1' negative marking) Q.7 Subjective Questions ('–1' negative marking) Q.8				(3 marks, 3 min.) (4 marks, 4 min.) (3 marks, 3 min.) (4 marks, 5 min.)	M.M., Min. [12, 12] [8, 8] [3, 3] [4, 5]
1.	For an element 'A', the (A) EA of A+	For an element 'A', the first ionisation energy will be numerically equal to : A) EA of A ⁺ (B) EA of A ²⁺ (C) IE of A ²⁺ (D) None of these			
2.	Which of the following relation is correct if EN vs (A) 2 l.P. – E.A. – E.N. = 0 (C) 2 E.N. – l.P. – E.A. = 0		(B) 2 I.P. – I	alue is on Mulliken scale and IP & EA are in eV : (B) 2 I.P. – E.A. + E.N. = 0 (D) E.N. – I.P. – E.A. = 0	
3.	The five successive io ¹ respectively. The val (A) 1	_	an element 'X' are 8	800, 1427, 2658, 25024 ar (D) 4	nd 32824 KJ mole ⁻
4.	Number of elements which has value of electronegative is less than 3. H, N, Li, B, O, P, F				
	(A) 3	(B) 4	(C) 5	(D) 6	
5.*	Which of the following statements are correct: (A) F is the most electronegative and Cs is the most electropositive element in periodic table. (B) The EN of halogens decreases from F to I. (C) The E.A. of Cl is higher than that of F, though their EN values are in the reverse order. (D) The E.A. of noble gases is low.				
6.*	For electron affinity of (A) Br > F	halogens which of t (B) F < Cl	the following is corre (C) Br < Cl	ect ? (D) F < I	
7.	Comprehension # Read the following comprehension carefully and answer the questions (a) to (c). The properties of the elements (atomic/ionic radii, electron gain enthalpy, ionization er electronegativity, valency, oxidising/reducing power, acid/base character, etc.) which are directly or in related to their electronic configurations are called periodic properties. These properties show a gradation on moving from left to right in a period or from top to bottom in a group. Down a group, the ionic radii, metallic character and reducing character increases while ionization enthalpy and electroned decreases. Along a period from left to right, atomic/ionic radii and metallic character decreases ionization enthalpy, electronegativity, non-metallic character and oxidising power increases. However, gain enthalpy becomes less negative down a group but more negative along a period. In contra gases have positive electron gain enthalpies which do not show any regular trend.				
	(a). Which of the follow (A) K ⁺	ving isoelectronic io (B) Ca²+	ons has the lowest fil (C) Cl	rst ionization enthalpy : (D) S ²⁻	
	(b). The outermost ele (A) ns ² np ³	ctronic configuration (B) ns² np⁴	n of the most electro (C) ns² np⁵	negative element is : (D) ns² np6	
	(c). Amongst the following elements (whose electronic configurations are given below), the one having the highest ionization enthalpy is: (A) [Ne] 3s ² 3p ¹ (B) [Ne] 3s ² 3p ³ (C) [Ne]3s ² 3p ² (D) [Ar] 3d ¹⁰ 4s ² 4p ³				
8.	Among the elements w (a) highly electronegat	vith atomic numbers	s 9,12, 36, identify b (b) an inert gas	y atomic number, an elem (c) highly ele	

Answer Kev

DPP No. #3

(C)

1. (A) 2.

(C)

3.

4. (B)

5.*

(A,B,C,D)

6.*

(B,C)

7. (a). (D)

(b).

(c).

8.

(a) ₉F (b) ₃₆Kr (c) ₁₂Mg

(C)

(B)

ts & Solutions

DPP No. #3

 $EN = \frac{I.P. + E.A.}{2}$

3. Here I.E., >> IE,

After removed of 3e® element obtain noble gas configuration.

Li, B, P, H 4.

Electron affinity is the measure of the ease with which an atom receives the additional electron in its 6.* valence shell in gaseous phase.

Generally down the group, the electron affinity decreases due to increase in atomic size.

 $Z_{\mbox{\tiny eff}}$ for $\mbox{S}^{2\Theta}$ is least. 7. (a).

(b). $F \rightarrow 1s^2 2s^2 2p^5$

(a) _。F 8.

(b) 36Kr

(c) ,2Mg

